Step of Proof: fun_with_inv_is_bij
12,41
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
fun
with
inv
is
bij
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
B
4.
g
:
B
A
5. (
g
o
f
) = Id{
A
}
6. (
f
o
g
) = Id{
B
}
Bij(
A
;
B
;
f
)
latex
by ((((Repeat (Unfolds ``biject inject surject`` 0))
CollapseTHEN (GenUnivCD))
)
Co
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
C
) inil_term)))
latex
C
1
:
C1:
7.
a1
:
A
C1:
8.
a2
:
A
C1:
9.
f
(
a1
) =
f
(
a2
)
C1:
a1
=
a2
C
2
:
C2:
7.
b
:
B
C2:
a
:
A
. (
f
(
a
) =
b
)
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
Surj(
A
;
B
;
f
)
,
Inj(
A
;
B
;
f
)
,
P
&
Q
,
Bij(
A
;
B
;
f
)
origin